

Повышение гибкости гидроаккумулирующих электростанций: передовые решения и политические рекомендации. Часть 2. Перспективы и пути развития ГАЭС в энергосистеме КНР
Аннотация
Цели по декарбонизации в Китайской Народной Республике амбициозны. Их достижение зависит от широкомасштабного внедрения нестабильных возобновляемых источников энергии (ВИЭ) - таких, как ветряные и солнечные.
В тоже время, появление значительного объема возобновляемых источников энергии в балансе энергосистемы может привести к проблемам появления нестабильности её режимов, которые могут быть предотвращены увеличением гибкости энергосистемы за счет внедрения в энергосистему накопителей энергии.
Гидроаккумулирующие электростанции ГАЭС являются наиболее распространенной технологией аккумулирования электроэнергии на мировом уровне и единственным полностью готовым решением для долгосрочного её хранения. Энергосистема Китая уже является мировым лидером по установленной мощности ГАЭС и планирует значительно увеличить ее до 2030 года.
Проведено исследование, в котором рассматривается потенциал технологического совершенствования существующего и будущего парка ГАЭС в Китае, которые позволят Китаю лучше справиться с задачей балансировки генерации нестабильных ВИЭ.
Литература
Nibbi, L. Improving Pumped Hydro Storage (PHS) Flexibility in China [Electronic resource] / L. Nibbi, P. Sospiro, M. de Lucia // In Proceedings of the International Conference on Applied Energy 2021, 29 November -- 5 December. -- Thailand/Virtual. – 2021. – Vol. 1. – P. 1 -- 6. – (https://doi.org/10.46855/energy-proceedings-9783).
Dotzauer, M. How to measure flexibility -- Performance indicators for demand driven power generation from biogas plants [Electronic resource] / M. Dotzauer, D. Pfeiffer, M. Lauer, M. Pohl, E. Mauky, K. Bär, M. Sonnleitner, W. Zörner, J. Hudde, B. Schwarz [et al.] // Renew. Energy. – 2019. -- Vol. 134. – P. 135 – 146. – (https://doi.org/10.1016/j.renene.2018.10.021).
Müller, T. How to Balance Intermittent Feed-in from Renewable Energies? [Electronic resource] / T. Müller, S. Schreiber // A Techno-Economic Comparison of Flexibility Options. -- 2017. – (https://reflex-project.eu/wp-content/uploads/2017/12/REFLEX_policy_brief_flexibility-options_final_14_12_2017.pdf).
Global Wind Energy Council [Electronic resource]: Global Wind Report 2022 // Global Wind Energy Council. -- Brussels, Belgium, 2022.
Renewable Energy Statistics 2022 [Electronic resource] // International Renewable Energy Agency (IRENA). -- Abu Dhabi, United Arab Emirates. -- 2022. – (https://www.irena.org/publications/2022/Jul/Renewable-Energy-Statistics-2022).
Beijing Declaration on Wind Energy [Text] // Global Wind Energy Council (GWEC); CREIA; CWEA. -- Brussels, Belgium, 2020.
Medium and Long-Term Development Plan for Pumped Storage (2021 -- 2035) [Text] // General Department of the National Energy Administration (NEA) of the People’s Republic of China (PRC). -- Beijing, China, 2021.
Hydropower Status Report 2021 [Electronic resource] // International Hydropower Association. -- London, 2021. – (https://www.hydropower.org/publications/2021-hydropower-status-report).
Hydropower Status Report 2022 [Electronic resource] // International Hydropower Association. – (https://www.hydropower.org/publications/2022-hydropower-status-report).
Global Status Report. 2022 [Electronic resource] // REN21. Renewables 2022. – (https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Fact_Sheet_Germany.pdf).
China Europe Water Platform. 2012 [Electronic resource] // www.cewp.eu.
Rogner, M. Pumped Storage Tracking Tool [Electronic resource] / M. Rogner, S. Law // International Hydropower Association, 2019. – (https://www.hydropower.org/hydropower-pumped-storage-tool).
Renewable Energy -- Hydro Power. 2020 [Electronic resource] // Toshiba. – (https://www.global.toshiba/ww/products-solutions/renewable-energy/products-technical-services/hydro-power.html).
Xiaojia, Y. Research on the Method of Combined Control of Heat Storage and Power Storage to Improve Wind Power Consumption Capacity [Text] / Y. Xiaojia // Shenyang University of Technology. -- Shenyang, China, 2019.
China Renewable Energy Outlook 2018 [Electronic resource] / CNREC. – 2019. -- No. Creo 2019. – (http://boostre.cnrec.org.cn/wp-content/uploads/2018/11/CREO-2018-Summary-CN.pdf).
China Renewable Energy Outlook 2019 [Text] // China National Renewable Energy Centre: Beijing, China, 2020.
Wang, X. 2019 China Wind and Solar PV [Text] / X. Wang, Y. Tao // Overview. -- 2020.
Zhao, Z. Variable Renewable Energy curtailment level in China [Electronic resource] / Z. Zhao, Z. Wu, B. Xu, J. Pan // Project BBChina. -- 2020. – (http://www.bbchina.eu/projects-of-the-course-renewable-energy-technologies-academic-year-2019-20/).
Meissner, F. Curtailment of Renewable Electricity as a Flexibility Option [Text] / F. Meissner, C. Stiewe // Berlin Economics. -- Berlin, Germany, 2019.
Cook, O. Accelerating Corporate Renewable Energy Engagement in China. 2019 [Electronic resource] / O. Cook, M. Leschke – (https://resourcesolutions.org/wp-content/uploads/2019/11/Accelerating-Corporate-RE-Engagement-in-China.pdf).
Zhou, Y. China’s Renewables Curtailment and Coal Assets Risk Map: Research Findings and Map User Guide [Electronic resource] / Y. Zhou, S. Lu // Bloomberg New Energy Finance Bnef 2017. – (https://data.bloomberglp.com/bnef/sites/14/2017/10/Chinas-Renewable-Curtailment-and- Coal-Assets-RiskMap-FINAL_2.pdf).
Elliott, D. Green power curtailment in China [Text] / D. Elliott // In Physics World IOP Publishing Ltd. -- Bristol, UK, 2019. -- P. 1 -- 4.
Elliott, D. China’s Energy Plans [Text] / D. Elliott // In Physics World; IOP Publishing Ltd/ -- Bristol, UK, 2018.
Letcher, T.M. Storing Energy: With Special Reference to Renewable Energy Sources [Text] / T.M. Letcher. -- Philadelphia, PA, USA: Еlsevier Inc., 2016.
Zeng, M. Overall review of pumped-hydro energy storage in China: Status quo, operation mechanism and policy barriers [Electronic resource] / M. Zeng, K. Zhang, D. Liu // Renew. Sustain. Energy Rev. -- 2013, 17. – P. 35 -- 43. – (https://doi.org/10.1016/j.rser.2012.05.024).
Xu, Y.W. Developments and characteristics of pumped storage power station in China [Electronic resource] / Y.W. Xu, J. Yang // IOP Conf. Ser. Earth Environ. Sci. -- 2018, 163, 012089. – (https://doi.org/10.1088/1755-1315/163/1/012089).
Kong, Y. Pumped storage power stations in China: The past, the present, and the future [Electronic resource] / Kong Y., Kong Z., Liu Z., Wei C., Zhang J., An G. // Renew. Sustain. Energy Rev. -- 2017, 71, 720–731. – (https://doi.org/10.1016/j.rser.2016.12.100).
Zhang, F. Study on pricing mechanism of pumped hydro energy storage (PHES) under China’s electricity tariff reform [Electronic resource] / F. Zhang, Z. Xu, B. Jiao, J. Feng // E3S Web Conf. -- 2018, 38, 04016. – (https://doi.org/10.1051/e3sconf/20183804016).
Views on Further Improving the Price Formation Mechanism for Pumped Storage Energy. [Electronic resource] / National Development and Reform Commission, People´s Republic of China. -- 2021. – (https://www.ndrc.gov.cn/xxgk/zcfb/tz/202105/t20210507_1279341.html).
China Renewable Energy Development Report 2021 [Electronic resource] // China Renewable Energy Engineering Institute. -- 2022. – (https://nmgxny.com/myloads/soft/220629/1-220629104F8.pdf).
Chinabidding. A Large Number of Pumped Storage Projects Accelerate the Promotion of Small and Medium-Sized Power Plants to Welcome Development Opportunities [Electronic resource]. – 2022. -- (сhinabidding.mofcom.gov.cn/article/hyzx/xwzx/hyxw/202207/25571.html%0AA).
Xinhua News Agency. NEA Pumps up Hydropower to Stabilize grid. 2022 [Electronic resource]. – (chinadaily.com.cn/a/202208/15/WS62f99b3ca310fd2b29e7220f.html%0AA).
Yanzhang, D. Develop Pumped Storage to Promote Green Development/People’s Daily. Online. 2022 [Electronic resource] / D. Yanzhang. – (obor.nea.gov.cn/detail/17621.html%0Afrontobor.nea.gov.cn/detail/17621.html%0Afront).
Sheng’an, Z. Speech at 2021 World Hydropower Congress High-level Panel: The International Forum on Pumped Storage Hydropower. 2021 [Electronic resource] / Z. Sheng’an. – (https://congress.hydropower.org/).
Yang, W. Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment [Electronic resource] / W. Yang, J. Yang // Appl. Energy. -- 2019, 237. -- P 720 -- 732. – (https://doi.org/10.1016/j.apenergy.2018.12.09).
Li, J. Prospect of new pumped-storage power station [Electronic resource] / J. Li, C. Yi, S. Gao // Glob. Energy Interconnect. -- 2019, 2. – P. 235 -- 243. – (https://doi.org/10.1016/j.gloei.2019.07.016).
Zhang, H. Technology Summary on the Application of Variable-Speed Pump-Turbine Units for Wind Storage Operation [Electronic resource] / H. Zhang, M. Chen, Y. Peng, J. Zhou, R. He // In Proceedings of the 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, China, 7 -- 9 September 2019. -- P. 232 -- 235. – (https://doi.org/10.1109/CIEEC47146.2019.CIEEC-2019123).
Wang, H. Dynamic characteristics of pumped storage unit based on the full-size converter [Electronic resource] / H. Wang, Z. Ma // E3S Web Conf. 2021, 233, 03065. – (https://doi.org/10.1051/e3sconf/202123303065).
Yang, Y. Introducing LADRC to Load Frequency Control Model with Pumped Storage Power Station Considering Demand Response [Electronic resource] / Y. Yang, L. Xiang, X. Guo, Y. Zheng // In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22 -- 24 November 2019. -- P. 610 -- 615. – (https://doi.org/10.1109/CAC48633.2019.8997377).
Li, H. Research on variable speed operation of static frequency converter for pumped storage units [Electronic resource] / H. Li, G. Li, B. Yang, L. Ji // E3S Web Conf. 2021, 252, 02022. – (https://doi.org/10.1051/e3sconf/202125202022).
Zhu, B.S. Development and Prospect of the Pumped Hydro Energy Stations in China [Electronic resource] / B.S. Zhu, Z. Ma // Journal Phys. Conf. Ser. 2019, 1369, 012018. – (https://doi.org/10.1088/1742-6596/1369/1/012018).
Ming, Z. Development of China’s pumped storage plant and related policy analysis [Electronic resource] / Z. Ming, F. Junjie, X. Song, W. Zhijie, Z. Xiaoli, W. Yuejin // Energy Policy. -- 2013, 61. – P. 104 -- 113. – (https://doi.org/10.1016/j.enpol.2013.06.061).
Zuo, Z. Flow-Induced Instabilities in Pump-Turbines in China [Electronic resource] / Z. Zuo, S. Liu // Engineering. -- 2017, 3. – P. 504 -- 511. – (https://doi.org/10.1016/J.ENG.2017.04.010).
Teng, F. Assessment of future whole-system value of large-scale pumped storage plants in Europe [Electronic resource] / F. Teng, D. Pudjianto, M. Aunedi, G. Strbac // Energies. -- 2018, 11, 246. – (https://doi.org/10.3390/en11010246).
Japan International Cooperation Agency; Tokyo Electric Power Services; Tokyo Electric Power Company. [Electronic resource]: Final Report on Feasibility Study on Adjustable Speed Pumped Storage Generation Technology. – 2012. – (Openjicareport.jica.go.jp/pdf/12044822.pdf).
Japan International Cooperation Agency. Data Collection Survey on Pumped Storage Hydropower Development in Maharashtra [Electronic resource]: Final Report. – 2012. – (Openjicareport.jica.go.jp/pdf/12082897_01.pdf).
Ссылки
- На текущий момент ссылки отсутствуют.
© 1998 — 2024 НТФ "Энергопрогресс"
Адрес редакции:
129090, Москва, ул. Щепкина, 8, офис 101
Тел.: (495) 234-74-17
E-mail: el.stantsii@gmail.com, ei-stantsii@yandex.ru